Centre No.				Paper Reference			Surname	Initial(s)			
Candidate No.			6	6	6	3	/	0	1	Signature	

6663/01

Edexcel GCE

Core Mathematics C1 Advanced Subsidiary

Tuesday 10 January 2006 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination Mathematical Formulae (Green)

Items included with question papers

Calculators may NOT be used in this examination.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

Check that you have the correct question paper.

You must write your answer for each question in the space following the question.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 10 questions in this question paper. The total mark for this paper is 75.

There are 20 pages in this question paper. Any blank pages are indicated.

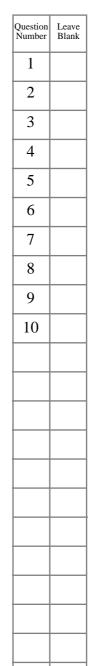
Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.

This publication may be reproduced only in accordance with cel Limited copyright policy.

W850/R6663/57570 7/3/3/3/3/45,000



Team Leader's use only

Examiner's use only

Leave 1

Turn over

Total

1. Factorise completely	Leave blank
$x^3 - 4x^2 + 3x.$	(3)
	Q1
(Total	3 marks)

 $P\overline{MT}$

$u_{n+1}=(u_n-3)^2, u_1=1.$	
(a) Find u_2 , u_3 and u_4 .	
	(3)
(b) Write down the value of u_{20} .	
	(1)

3

_		Leav blan
3.	The line <i>L</i> has equation $y = 5 - 2x$.	
	(a) Show that the point $P(3, -1)$ lies on L .	
	(1)	
	(b) Find an equation of the line perpendicular to L , which passes through P . Give your answer in the form $ax + by + c = 0$, where a , b and c are integers.	
	answer in the form $ax + by + c = 0$, where a , b and c are integers. (4)	
_		
		Q3
		Q3
	(Total 5 marks)	

Given that $y = 2x^2 - \frac{6}{x^3}$, $x \neq 0$,	
(a) find $\frac{dy}{dx}$,	
dx	(2)
(b) find $\int y dx$.	
	(3)

5

Turn over

		Leave
5.	(a) Write $\sqrt{45}$ in the form $a\sqrt{5}$, where a is an integer.	
	(1)	
	(b) Express $\frac{2(3+\sqrt{5})}{(3-\sqrt{5})}$ in the form $b+c\sqrt{5}$, where b and c are integers.	
	$(3-\sqrt{5})$ (5)	

 $P\overline{MT}$

Leave blank

6. Figure 1

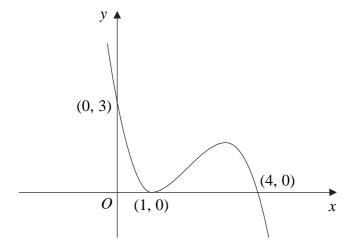


Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the points (0, 3) and (4, 0) and touches the x-axis at the point (1, 0).

On separate diagrams sketch the curve with equation

(a)
$$y = f(x + 1)$$
, (3)

(b)
$$y = 2f(x)$$
, (3)

(c)
$$y = f\left(\frac{1}{2}x\right)$$
. (3)

On each diagram show clearly the coordinates of all the points where the curve meets the axes.

Question 6 continued		Leave blank
		Q6
	(Total 9 marks)	9

Leave blank $P\overline{MT}$

7.	On Alice's 11th birthday she started to receive an annual allowance. The first annual allowance was £500 and on each following birthday the allowance was increased by £200.	
	(a) Show that, immediately after her 12th birthday, the total of the allowances that Alice had received was £1200.	
	(1)	
	(b) Find the amount of Alice's annual allowance on her 18th birthday. (2)	
	(c) Find the total of the allowances that Alice had received up to and including her 18th birthday.	
	(3)	
	When the total of the allowances that Alice had received reached £32 000 the allowance stopped.	
	(d) Find how old Alice was when she received her last allowance. (7)	

Question 7 continued	Leave blank
	Q7
(Total 13 marks)	

$f'(x) = 3 + \frac{5x^2 + 2}{x^{\frac{1}{2}}}, x > 0,$	
find $f(x)$ and simplify your answer.	(7)
	(7)

9. Figure 2

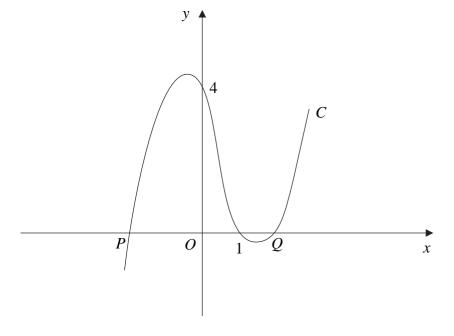


Figure 2 shows part of the curve C with equation

$$y = (x - 1)(x^2 - 4)$$
.

The curve cuts the x-axis at the points P, (1, 0) and Q, as shown in Figure 2.

(a) Write down the x-coordinate of P, and the x-coordinate of Q.

(2)

(b) Show that $\frac{dy}{dx} = 3x^2 - 2x - 4$.

(3)

(c) Show that y = x + 7 is an equation of the tangent to C at the point (-1, 6).

(2)

The tangent to C at the point R is parallel to the tangent at the point (-1, 6).

(d) Find the exact coordinates of R.

(5)

Question 9 continued	Lebl	eavo lank
		Q!
	(Total 12 marks)	

Leave blank

10.

$$x^2 + 2x + 3 \equiv (x + a)^2 + b.$$

(a) Find the values of the constants a and b.

(2)

(b) In the space provided below, sketch the graph of $y = x^2 + 2x + 3$, indicating clearly the coordinates of any intersections with the coordinate axes.

(3)

(c) Find the value of the discriminant of $x^2 + 2x + 3$. Explain how the sign of the discriminant relates to your sketch in part (b).

(2)

The equation $x^2 + kx + 3 = 0$, where k is a constant, has no real roots.

(d) Find the set of possible values of k, giving your answer in surd form.

(4)

Question 10 continued		Leav blar
		Q
	(Total 11 marks)	
	TOTAL FOR PAPER: 75 MARKS	